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ABSTRACT

The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical

matrix perturbation techniques as well as the concept of e-pseudoeigenvalues are applied to

show that parts of the spectrum are highly sensitive to small perturbations. Applications are

drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius

boundary layer flow. Parametric studies indicate a monotonically increasing effect of the

Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the

non-normality of the operators and their discrete matrix analogs and may be associated with

large transient growth of the corresponding initial value problem.
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1. Introduction

Hydrodynamic stability theory has received a great deal of attention over the past

decades (see e.g. [3][13]) and still is a field of active and ongoing research. Its widespread

applications range from basic fluid dynamics to magnetohydrodynamics, from geo-

physics to aeroelasticity, to name only a few. :

The starting point is a nonlinear evolution equation for a state vector describing the
flow field. A basic state is assumed and a linearization of the nonlinear equation about

this mean state results in a linear initial-boundary-value problem for the perturbations

(I) of the form OO/Ot + i/:(I) = 0. The linear operator 12 depends in general on parameters

describing the particular flow problem, such as Reynolds number, Math number etc.

Linear stability is defined in an asymptotic manner for t --_ ec. If for a given value of the

flow parameters any (small) perturbation dies out, the system is said to be linearly stable

for this particular parameter value. In the case of exponentially growing perturbations

the system is linearly unstable and nonlinear effects wil[ become significant once the

initially small perturbations reach sufficient amplitudes.

Eigenvalue analysis is the most dominant tool in determining the linear stability of a

system. It is based on the assumption that the time dependence of the perturbations

can be expressed in the form exp(-i,kt). This reduces the linear initial-boundary-value

problem to an eigenvalue problem £(I) = Z;(I). If the spectrum of /: consists of any

eigenvalues whose imaginary part is positive, the system will support exponentially

growing perturbations. If the spectrum of/; is confined to tl!e lower complex half-

plane, the system is linearly stable and small perturbations will decay for sufficiently

large time. This technique of determining the iinear stability has been used ahnost

exclusively during the past decades. It is importa!}t, however, to stress that both linear

stability and eigenvalue analysis are defined in an asymptotic setting (t _ ec) and do

not provide any information about the transie_nt i)ehavior of the operator £.

In most cases, the operators involved in hydrodynamic stability problems are non-

normal, i.e. although their set of eigenflmctions may be complete, the eigenfunctions do

not form an orthogonal basis. Although this has been known for a long time [1], little

attention has been paid to its consequences for the use of eigenvalues to describe the

temporal behavior of infinitesimal disturbances. Non-normality may result in a large

sensitivity of the eigenvalues to small perturbations of the operator. This has often been
experienced as unsatisfactory convergence of parts of the spectrum and has been noted

by several investigators [6][14][17]. As will be shown in this report, the sensitivity of the

eigenvalues reveals more information about the short-time behavior of the operator than

do the eigenvalues. Large transient growth is often associated with a high sensitivity

of £ and can occur even if the eigenvalue spectrum predicts decay. This _growth can

take substantial values depending on the departure from normality of the operator or

its discrete matrix analog.:For this reason, the _tudy of the _ensitivity of hydrodynamic

stability operators is as essential a8 the study of its eigenvaIues.

It has recently been shown [19] that parts of the Orr-Sommerfeld spectrum for plane

Poiseuille flow are highly sensitive to smaU perturbations. Furthermore, even for Reynolds



numbers far less than the critical value of 5772,large transient growth of perturbation
energy hasbeenfound. For a detailed analysis the reader is referred to [19].
In this paper, weaddressthe issueof eigenvaluesensitivity and discussthe useof eigen-
value analysis for the investigation of transient non-mode-likebehavior. Applications
are drawn from different fields of fluid dynamics. Although limiting ourselvesto exam-
ples arising in fluid dynamics, we anticipate similar effectsfor linear stability problems
that involve highly non-normal operators.
This paper is organizedas follows. Section 2 presentsa brief review of someclassical
matrix perturbation concepts and introduces the idea of e-pseudoeigenvalues. Section

3 applies the developed tooIs to the stability of both incompressible and compressible

flows. Section 4 summarizes and concludes this paper,

W_ would like to stress that this work is not concerned with roundoff error analysis.

The focus of the present analysis is on the sensitivity of the spectrum as an effect of the

non-normality of hydrodynamic stability operators.

2. Basics of Matrix Perturbation Theory

Matrix perturbation theory applied to eigenvalue problems is mainly concerned with the

question of relating a small perturbation in the entries of a matrix A to the variation in

its eigenvalues. Let E be a matrix with random entries and norm IIEII = e << 1 and let

be the perturbed matrix A + E. Given e and the (unperturbed) spectrum of A, how

is the spectrum of .4 related to the spectrum of A ? One of the most straightforward

estimates is given by linear perturbation theory [21].

Let A • CNxN be a diagonalizable matrix, i.e. V -1AV = diag(._l,_2,...,_N). The

Bauer-Fike theorem (see [5]) relates the maximum eigenvalue deviation (the spectral

variation [21]) to the norm of the perturbation matrix in the following way.

maxmin I_k- "_jt-< IIv EVil _(V)IIEII,
k j

(1)

where _ and _ are eigenvalues of .4 and A, respectively, and n(V) = ]IV -1 llllvll denotes

the condition number of the eigenvector matrix V. Throughout this study, we will

use the 2-norm (Euclidean norm) denoted by ]lxl[ = IlxtI = with x • C N

where (., .) stands for the associated inner product. The 2-norm generalizes to square

matrices in an obvious way. Equation (1) states that, if each perturbed eigenvalue

is associated with its closest unperturbed eigenvalue, the maximum deviation in the

entire spectrum is bounded by the product of condition number of V and the norm of

the perturbation matrix. The condition number _(V) = 1 if and only if A is normal, i.e.
AHA = AA H where H denotes the conjugate transpose. Therefore, for normal matrices

the eigenvalues of .4. will at most deviate from the eigenvalues of A by an amount of

]IEII. For non-normal matrices, _(V) can be substantially larger than 1 giving rise to

(9(1) deviations even for minute perturbations in the matrix entries.
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The expressionabovebounds the largest deviation of an eigenvaluein the entire spec-
trum asafunction of HEH,but doesnot accountfor the sensitivity of individual eigenval-

ues to small perturbations. A simple perturbationexpansion for an individual eigenvalue

yields [21]

y_Exk
_k-- Ak+ yHx k + O(IIEll2) lIE11<<1 (2)

where xk and Yk denote the right and left eigenvectors of A corresponding to the eigen-

value Ak. Neglecting higher order terms and taking the norm on both sides of equation

(2), one obtains

(3)

with

_(_)= lly_llllxkll (4)
ly_"xkl

Becauseofrelation(3)thequantity_(_k)isknownastheconditionofaneigenvalue[5]
and can be interpreted as a measure of .sensitivity to small perturbations in A. Again,

for normal matrices s( )_k ) = 1.

Computing the condition s()_k) of an eigenvalue Ak, is a straightforward procedure
to obtain a first indication about parts of the spectrum that may experience a high

sensitivity to small perturbations.
In an effort to analyze the behavior of non-normal operators and matrices, Trefethen

introduced the concept of c-pseudoeigenvalues [22][23]. Although valid for operators

and their discrete matrix analogs we will restrict ourselves to the matrix case only.

Let A(A) be the spectrum of A C C NxN. The &pseudospectrum A_(A) can be defined

in two equivalent ways [22].

A_(A) = {z • C: II(zi- A)-'ll _> ¢-i} (5)

or

A_(A) = {z • C:z • A(A + E) for some E with ]IEII _< e}. (6)

The first definition makes use of the norm of the resolvent R(z) = (zI- A)-' which

is continuously defined in the complex plane with the exception of the spectrum A(A).

As z approaches an eigenvalue of A, R(z) will become singular and ]ln(z)ll will tend to

infinity. Therefore, the point spectrum of A ,,','ill correspond to the locations z • C where
the norm of the resolvent will become infinite. For finite but large resolvent norm, z

will be defined as an e-pseudoeigenvalue of A with e = tlR(z)[1-1
The second definition makes use of the spectrum of a randomly perturbed matrix, z is

considered an e-pseudoeigenvalue of A if it is an (exact) eigenvalue Of a matrix ._ which

is perturbed by a random matrix E of norm e.
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Both definitions define the e-pseudospectrum as a region in the complex plane rather

than a discrete set. Trefethen [22][23] has shown that the e-pseudospectrum reveals more

about the behavior of non-normal operators and matrices than does the spectrum alone.

We illustrate this in the next section by calculating c-pseudoeigenvalues of highly non-

normal matrices arising in hydrodynamic stability theory. For a proof of the equivalence

of definitions (5) and (6) and for a more theoretical background on e-pseudoeigenvalues,

the reader is referred to references [19][22].

It is worth noting that the condition of an eigenvalue s(._k) can be used to bound the

c-pseudospectrum of A. Combining (6) and (3), we find

N

At C_ U{Ak + A,(_)_} (7)
k=l

where Ar denotes a ball of radius r. This relation states that the e-pseudospectrum

is enclosed in the union of disks around the eigenvalues kk with radius s(_k)e. It is
important to keep in mind that relation (7) only holds for e sufficiently small such that

higher order terms in equation (2) are negligible. Again; foi" normal matrlces, thaf is

s(Ak) = 1, we obtain a sharp bouncl on the _:pseudospectrum.

An important implication of the sensitivity of the spectra is the possibility of large tram

sient growth of a disturbance governed by a non-normal operator. To demonstrate this,
let us return to the linearized initial-boundary-value problem governing the evolution
of infinitesimal perturbations,

0¢
_- + iL_b = 0, (8)

where ¢ denotes the spatially dfl_cretized state vector and L now stands for the dL_cretized

matrix analog of the linear stability operator. Since the non-normality is an operator

property, any consistent discretization technique for £ will capture its behavior as long
as sufl%ient resolution is ensured. The solution to (8) is given by

= (}o exp(-itL) (9)

with ¢0 as the initial condition ¢(t = 0). Applying eigenvalue analysis, it is straightfor-
ward to show [23] that

exp(-icrt) _< []exp(-itL)] l <_ _(V)exp(-iat), (lo)

where o" stands for the largest imaginary part of the spectrum of L, i.e. the imaginary
part of the least stable mode of L.

If L is normal, then _(V) = 1 and the behavior of the initial-boundary-value problem

is completely determined by the eigenvalues of L. In case L is highly non-normal,

i.e. _(V) >> 1, the tipper bound on ]]exp(-itL)l I allows for transient growth, i.e.

II lI/ll 011 >> 1, although the spectrum of L is confined to the lower complex half-plane.
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For non-normal matrices, it is therefore necessary to compute the norm of the matrix

exponential instead of relying on the spectrum of L to make predictions about the

temporal transient behavior as described by tile initial-boundary-value prol)lem.

A necessary and sufficient condition for the existence of transient growth can be derived

in a straightforward manner from the evolution equation for the norm of the state vector.

Assuming that the discretized linear initial value problem is given in the form of equation

(8), the evolution equation for the norm of the state vector (} reads

= 6) + )=(-iLc},6)+(6,-iL6)=2Im[(Lc},6)], (11)

where the relation (f,g)= (g, f)* has been utilized.

It is evident from equation (11) that temporal growth of ¢ measured in the Euclidean

norm can occur if and only if the imaginary part of (L6, ¢) is positive. The quantity

(L¢, ¢) is known as the field of values or, equivalently, the numerical range of L and is
defined as

.7"(L) = {z:z= (Lq_, 6) with ll II = 1}.

It is clear that the field of values of L contains the spectrum of L (see [8]). It can fl_rther

be shown (e.g. [22]) that for normal matrices, if(L) is the convex hull of the spectrum
whereas for non-normal matrices the field of values can be a considerably larger set

than the spectrum. Especially cases in which the field of values .T(L) reaches into the

unstable domain, although the spectrum of L is confined to the stable half-plane, are of

particular interest. For these cases, transient growth followed by asymptotic decay can

be predicted.

The boundary of the field of values gives an immediate indication for transient growth

and can easily be calculated using standard techniques [8]. It should be kept in mind,

however, that the field of values .T'(L) is depends on the choice of the scalar product

and is an indicator for growth measured in its associated norm.

3. Application to Hydrodynamic Stability Problems

In this section we apply the tools developed in the previous chapter to study the sen-

sitivity of an assortment of matrices resulting from discretized hydrodynamic stability

operators. We thereby use the following qualitative and quantitative techniques to

illustrate the properties of the spectra under consideration.

• Following the second definition of e-pseudospectra we display a superposition of

100 spectra of randomly perturbed matrices A = A + E. The complex entries of

the matrix E are drawn randomly from a normal distribution with mean zero and

standard deviation one. The norm of the matrix E is chosen to be e. The plot then

shows e-pseudoeigenvalues in a "statistical" fashion and gives a first impression of

the sensitive parts of the spectrum under consideration.
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* For a feweigenvaluesthe condition definedby (4) is tabulated which givesan upper
bound for the eigenvaluedeviation (equation (3)) for sufficiently small perturba-
tions. Although the bound might not be sharp, it gives insight into the relative
sensitivity of eigenvaluesto small perturbations.

• An illustrative means to understand the spectrum of a non-normal operator is a
contour plot of constant resolventnorm ]l(zZ-A) -1 ]t = 1/e for various_. It displays
closed,nested curves that confine the eigenvaluesof the matrix A if perturbed by

a random matrix of norm s. The numerical realization of this kind of plots is

rather time consuming and involves a singular value decomposition on grid points

discretizing the region of interest in the complex plane (see [19][22]).

We consider three different flow types to demonstrate spectral properties of non-

normal operators. The first example is incompressible, plane Couette flow, i.e. the flow

between infinite plates moving in opposite direction. Another application comes from

trailing line vortex flow. Both inviscid and viscous disturbances are considered. The

finalexample is taken from compressible Blasius boundary layer flow, i.e. flow in a
semi-infinite domain.

We would like to emphasize that, as long as sufficient resolution is ensured, the

method of discretizing the stability operator does not infuence the qualitative results

of this study. The sensitivity of the spectrum is a property of the operator that will be

captured by its discrete matrix analog.

3.1. Plane Couette Flow

Plane, incompressible Couette flow, i.e. flow between infinite parallel plates moving

in opposite direction, can be considered as one of the canonical flow situations. The

linear mean velocity profile greatly simplifies theoretical investigations, which made this

type of flow particularly accessible to analytical methods. Herron [7] showed that plane
Couette flow is linearly stable for all Reynolds numbers.

The problem of transient growth in plane Couette flow has been studied previously by

Farrell [4] using variational principles and recently by Reddy & Henningson [18] making

use of s-pseudospectra. In this presentation, it is included for completeness and is meant

as an introductory example to fmniliarize the reader with the analysis of non-normal
matrices and their associated characteristics.

The equation governing the evolution of infinitesimal, two-dimensional disturbances

in plane Couette flow of the form v(x, y, t) = _(y, t)exp(iax) can be written as

0--7 + iL:_3 = 0 (12a)

_3(+1) = D g(+l) = 0, (12b)

with

E = (D 2 - c_2)-_[aU(D _ - _2) _ ___(D 2 _ o2)21 (12c)



where _ denotes the Fourier transformed normal velocity, c_ represents the streamwise

wavenumber, U = y stands for the mean velocity profile and D denotes differentiation

in the wall normal direction y. All flow quantities have been non-dimensionalized by

the velocity of the moving plates U0 and the channel half-height h and the Reynolds

number R is based on these scaling parameters, i.e. R = Uoh/1_. The equation above

is related to the Orr-Sommerfeld equation which has received a great deal of attention

over the past decades [2].

The operator £ is spatially discretized using a hybrid Chebyshev pseudospectral tech-

nique and the discretized operator is denoted by L.
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Figure la shows the superposition of 100 spectra of L for a = 1 and R = 1500 per-

turbed by random matrices of norm 10 -6. The unperturbed spectrum is shown by larger

squares. It is observed that a perturbation of norm 10 .6 can cause some eigenvalues

to move by a distance of order one. This sensitivity is highest for eigenvalues at the

intersection point of the three eigenvalue branches. This observation is also apparent

from Table 1 which lists selected eigenvalues together with their condition as defined by

(4). It can be seen that the condition is largest for the eigenvalue in the junction point
whereas the least stable mode has a rather low condition, which is also reflected in the

low sensitivity of the least stable modes in Figure la. Figure lb, which displays the

resolvent norm contours together with the unperturbed spectrum, gives the complete

picture of the sensitivity properties of the matrix L for the specified parameter values.
It is seen that even a perturbation of 10 -s has an appreciable effect on the location of

the eigenvalues near the intersection point of the three branches. In order to move the
least stable modes a distance of order one, a perturbation of norm 10 .2 is needed which
renders them rather insensitive. It should be noted that the 10-2-pseudospectrum ex-

tends into the upper half-plane which has implications on the possibility of transient

growth. For more information on this issue the reader is referred to [19].

eigenvalue condition

0.178337 1020.723771

0.653132

0.336625

-0.516156 10 -5

0.218617 10 -3

-0.259583

-0.102713

-0.457634

-1.42610

-0.702198

0.289772 102

0.328836 105

0.833198 106

0.167807 10 9

Table.1. Selected eigenvalues and conditions for plane Couette flow for _ = 1 and

R = 1500.

=

It is interesting to probe the transient temporal behavior of L. To this end, we

calculate the norm of the matrix exponential of L for e_ = 1 and R = 1500. Figure 2

shows Ilexp(-itL)l[ versus time. Large transient growth up to about I1¢11/11¢oll _ 20
is observed before exponential decay predicted by the eigenvalues sets in. The reason

for this growth lies in the non-orthogonality of the set of eigenvectors of L, which in
turn is an effect of the non-normality of the respective stability operator. Figure 2 is

a striking and instructive demonstration that predictions about the temporal behavior

based on the eigenvalues of L can be misleading and that the non-mode-like behavior

of the stability operator is not captured by its spectrum.

As explained in section 2, the field of values of the linear stability operator for plane
Couette flow can be used as an indicator for transient growth. For the parameter values

chosen above, the maximum imaginary part of the field of values has been calculated
to be 0.557 which is a measure for the largest growth rate possible.



Although measuring the growth in the 2-norm does reveal the transient behavior of

the operator under investigation, a weighted norm has to be used to draw conclusions

about tile amplification of physical flow quantities such as perturbation energy; for
details the reader is referred to [19].

20.

15.
7
t_

10.

I I I I

O.

O. 10, 20. 30. 40.

time

Fig.2. Plot of Ilexp(-itL)ll versus time for plane Couette _qowat c_ = 1 and R =
1500.

Tile dependence of the sensitivity on the Reynolds number is shown in Table 2. For

this case, the sensitivity has been defined as -logl0(ll(z_I- L)-'II), i.e. the negative

exponent of the resolvent norm evaluated at selected locations zj in the complex plane.

Table 2 shows a monotonic increase of the sensitivity with increasing Reynolds number

which is more pronounced for locations near the intersection point of the three eigenvalue
branches than near the least stable modes.

!Reynolds number sensitivity

z=0.7-i0.2 z=0.4-i0.4 z=-i0.4

500

1000

1500

2000

2500

1.772

2.095

2.752

2.850

3.020

3.092

4.343

4.975

5.790

6.434

4.544

5.277

6.770

7.232

8.446

Table.2. Dependence of the sensitivity on the Reynolds number at selected locations in
the complex plane.
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3.2. Trailing Line Vortex Flow

Stability analysis of swirling flows is an active area of research. One particular mean

flow which has received much attention in recent years is the trailing line (Batche-

lor) vortex model([9]-[12],[16]). In cylindrical coordinates (r, 0, z) the base flow for the
columnar vortex is given by

"- --7 ,2U = 0, V q-(1 - e ), W = W0 + ¢-r2, (13)
r

where U, V, and W are the radial, tangential, and axial velocities, respectively. The

swirl parameter q is related to the ratio of maximum azimuthal velocity to maximum

axial velocity and W0 represents the undisturbed outer axial flow. Without loss of

generality, throughout this section we assume W0 = 1.

The above vortical mean flow is perturbed by three-dimensional disturbances of the

type

[u,v,w,p] = [i_(r,t),_(r,t),_(r,t),13(r,t)]ei( c_z + nO), (14)

where a is the axial wavenumber and n is the azimuthal wavenumber which takes on

integer values only. As in the previous section, the linearized governing equations (see

[9],[10]) are arranged in the form O¢/Ot + i£¢ = 0, where ¢ is the state vector

¢ = [_(,.,t),_(,.,t),_(,.,t),_(,.,t)] T . (15)

The operator £ is given by

with

and

Ill (2V 2in
r Rr 2 ) 0

(DV 2in V- R,---7 + -V)

DW

-i-(D+l)
7 r

iD

l,, = I2_ = -_-(D + 1) + --

122 0

0 /33

in io_

7 r 7

nV i n2+l
+ c_W-

i
i33 = /11 nt-

St2 "

11

_D _

n

F

c_

0

__ +a2)

(16a)

=



In equation (16a), D represents the radial derivative and R is the Reynolds number

based on the viscous core radius and the axial velocity excess (or deficit).
The boundary conditions far from the centerline of the vortex are

fi(cc) = _)(cxD) = _i'_(e_) = 0. (16b)

For single-valued and smooth solutions, the boundary conditions on the centerline of
the vortex are

if n = 0,

if n = -t-1,

if In[ > 1,

fi(0) =  3(0)= 0, and/3(0) must be finite,

fi(0)4-5(0)=0, Dfi(0)=0, d,(0)=/3(0)=0

= = = = o.

(16c)

The form of the continuity equation poses a problem as it does not contain a time

dependent term and therefore cannot be cast into an eigenvalue problem. Although row

and cohunn operations can be used to solve this issue, a more efficient method, used

in equation (16), is to artificially introduce the term "/Op/Ot to the continuity equation

where the constant 3' can be thought of as a weight parameter. This technique is known

as the artificial compressibility method. For swirling flows, Khorrami, Malik & Ash[9]

showed that for very small values of the constant 7, the physical eigenvalues remain
unaffected and the spectrum is computed efficiently.

The operator £ is spatially discretized using a Chebyshev spectral collocation tech-

nique. The details of the discretization are given in [9] and are omitted here.

Two distinct stability characteristics have resulted in a classification of swirling sta-

bility modes into inviscid and viscous perturbations. Modes with negative azimuthal

wavenumber are referred to as inviscid modes because their stability characteristics are
determined by inviscid phenomena. The so-called unstable viscous modes are dominated

by diffusive effects and include eigensolutions for azimuthal wavenumbers of n = 0, 1.
For large Reynolds numbers R >> 1, the growth rate of the viscous disturbances is

inversely proportional to the Reynolds number, i.e. in the limit of infinite Reynolds

number the viscous modes become neutrally stable. Based on previous investigations

[10][11], the trailing line vortex represented by equation (13) is unstable with respect to
both inviscid and viscous disturbances.

Due to space limitations, in this study we restrict our attention to a single azimuthal

Fourier mode taken from the inviscid and viscous family. We chose parameter values

that have been found to be the most interesting/challenging from a computational point
of view.

Figure 3 displays the pseudospectrum for the inviscid case of trailing line vortex

flow. The parameters are chosen as follows: o_ = 0.4, n = -1,R = 104,q = 0.4 and

3' = 10-s. Figure 3a shows the c-pseudospectrum for e = 10 -5. Sensitive eigenvalues
are observed close to the neutral line whereas the least stable modes show little effect

to the perturbations imposed. Figure 3b displays the resolvent contours for the same

case where the contour levels range from 10 -6 to 10 -4.

12
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Fig.3. Pseudospectra for trailing iine vortex [tow (inviscid case) for _' = 0.4, n =

-1,R = 104,q = 0.4 and V = 10-s. (a) Superposition of 100 spectra perturbed by

random matrices of norm 10 -_. The unperturbed spectrum is displayed by the larger

square symbols. (b) Contour pIot of constant resolvent norm. The contours represent

levels from 10 -6 (innermost contour) to 10 -4 (outer contour). Note the different scaling

for the real and imaginary axis.
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Table 3 lists the condition of selected eigenvalues and confirms the relative sensitivity

shown in Figure 3.

As was the case for Couette flow, the sensitivity of the eigenvalues increases mono-

tonically. Table 4 presents the sensitivity evaluated at three different locations in the

complex plane as a function of Reynolds number. In all three cases we experience an

increase in sensitivity with increasing Reynolds number.

eigenvalue condition

)_r Ai

0.436626

0.383041

0.366548

0.307724

0.356920

0.182285

0.914185 10 -1

-0.735235 10 -1

0.120135 10 -1

0.248804 10 -1

0.367540 103

0.669828 103

0.602626 10 a

0.830603 102

0.400462 104

Table. 3. Selected eigenvalues and conditions for swirling flow (inviscid case). Parameters

as in caption of Figure 3.

Reynolds number sensitivity

z=0.42+i0.12 z=0.375-i0.03 z=0.365+i0.02

1000

2000

5000

10000

20000

4.076

4.092

4.111

4.121

4.128

4.176

4.319

4.683

5.029

5.228

5.236

5.279

5.322

5.635

5.968

i Z

i Table.4. Dependence of the sensitivity on the Reynolds number (inviscid case).

The pseudospectrum for the viscous case of the trailing line vortex flow is shown

in Figure 4 for o: = 0.3, n = 1,R = 104,q = 0.4 and 7 = 10-9- Figure 4a reveals
that a perturbation of norm 10 .6 results in a deviation of the eigenvalues orders of

magnitude larger than the perturbation imposed. Figure 4b displays the contours of

constant resolvent norm with levels ranging from 10 -s to 10 -s. It is interesting to note

that the unstable eigenvalue lies within the 10-8-contour.
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Fig.4. Pseudospectra for trailing line vortex flow (viscous case) for a = 0.3, _z =

1,R = 104 ,q = 0,4 and 3' = 10-9. (a) Superposition of 100 spectra perturbed by

random matrices o£ norm 10 -6. The unperturbed spectrum is displayed by the larger

square symbols. (b) Contour plot of constan_ resolvent, norm. The contours represent

IeveIs from 10 -8 (innermost contour) to 10 -5 (outer contour). Note _l_e dif/'eren_ scaling

for the reai and imaginary axis.
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Table 5, listing the condition for assorted eigewealues,emphasizesthis fact as the
unstable mode showsthe largest eigenvaluecondition. A parameter study, summarized
in Table 6, shows that the sensitivity of the spectrum, especially near the unstable
mode,grows quite appreciably.

eigenvalue condition
_r hi
0.380991
0.350173
0.323453
0.322607
0.310078

-0.527545i0 -2
-0.33958110-2
0.91811110 -4

-0.155546 10 .2

-0.655544 10 -3

0.231711 103

0.522167 103

0.159909 106

0.150151 106

0.213876 104

Table.5. Selected eigenvalues and conditions for swirling" flow (viscous case). Parameters

as in caption of Figure 4.

Reynolds number sensitivity
z =0.38-i0.004 z=0.35-i0.002 z= 0.322-i0.001

30

60

200

500

1000

3000

I0000

4.089

4.381

4.864

5.163

5.362

5.657

5.772

4.391

4.755

5.367

5.728

5.946

6.251

6.407

4.970

5.490

6.469

7.087

7.408

7.777

8.220

Table.6. Dependence of the sensitivity on the Reynolds number

Sensitive eigenvalues close to the neutral line can result in large transient growth

of the perturbation amplitude. In order to show that, we calculated the norm of the

matrix exponential as described in section 2. Figure 7 shows the amplification factor

llCH/ll¢011 versus time. A large transient growth is observed which only for large times

is governed by the unstable eigenvalue.

The maximum imaginary part of the field of values has been determined to be 24.78
which confirms the large growth of the state vector norm as plotted in Fig.5.
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Fig,& Plot of IIexp(-itL)ll versus time for trailing line vortex flow (viscous case) for

parameters given in caption of Figure 4.

3.3. Compressible Blasius Boundary Layer Flow

In this section we investigate the spatial evolution of infinitesimal disturbances as

opposed to the temporal evolution in the previous examples.

Consider compressible boundary-layer flow past a flat-plate. It is convenient to write

the basic state using the similarity transformation

f-PeUe r 1 '_d

where z, y are the coordinates parallel and normal to the plate, Pc is tile boundary-

layer edge density, u, the streamwise velocity and #_ the dynamic viscosity. Tile gov-

erning equations for the mean flow can be written in a similarity form as

(cf")' + f f" = 0 (18)

where

(a,g' -4- a2f' f")' -4- f g' --_ 0

f' = u/ue, c = PP/P¢#e

(19)
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g=H/H¢, al =c/a, as= (7-1)M_ (1 - 1

1 + ( _-_ )M 2 _)c

and M is the Mach number, 7 the ratio of specific heats, a the Prandtl number, and

H the total enthalpy.

The compressible boundary-layer flow is assumed to be locally parallel and is per-

turbed by a harmonic disturbance of the form

= _(x,y)ci([:_z -wt) (20)

where fl is the spanwise wavenumber and w is the disturbance frequency. We consider

the spatial stability in which disturbances grow in the streamwise direction x. The

spatial eigenvalue problem is nonlinear due to the streamwise viscous diffusion ((_xx)

term. It was argued in [15] that the eigenvalue problem can be linearized by dropping

the _xx term since the instability in supersonic flows is predominantly inviscid. Later

work suggests that this approximation is valid even at lower Mach nmnbers and is also

consistent with the triple-deck description of the Tollmien-Schlichting wave structure.

Hence, the governing compressible linear stability equations can be written as

!

?

2

-- + = o
Ox

where _ is a five-element vector defined by { _,, _2, (_3, (_4, (_5 } T

and the linear operator £ is of the form

(21)

{u, Y, p, T, Iv} T ,

d B d_
£ = A _y 2 + dy + C

(22)

where A, B and C are 5 x 5 matrices whose elements are related to the matrices given
in [15].

Equation (21) is solved subject to the boundary conditions

_, =_2=_4=q'5=0 aty=0, (23a)

_,, _2, _4, _5 _ 0 as y --, cx). (23b)

In the spatial analysis, the z-dependence of the disturbance is expressed in the form

exp(iAx) which results in the eigenvalue problem -Aq' = Z;_. Disturbances are expected

to grow in x if hn($) < 0.

The operator Z; is discretized by a Chebyshev spectral collocation technique described

in [15].

The pseudospectrum for compressible boundary layer flow is computed for a Reynolds

number R = 1000, where R = V/peu_z/#_. In Fig.6, it is displayed for the parameter

i
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combination M = 2,/3 = 0.08 and w = 0.02. Figure 6a shows a superposition of 100

spectra perturbed by random matrices of norm 10 .3 . Although the sensitivity of the

eigenvalues is less pronounced than in the previous cases, parts of the spectrunl do show

eigenvalues that deviate orders of magnitude more than the perturbation that caused the
deviation. Especially the least stable mode and the continuous entropy branch exhibit

a marked response to the perturbations as displayed in Figure 6b. This observation is

again confirmed by calculating the condition of the respective eigenvalues (Table 7).

eigenvalue

Ar Ai

0.407748 10 -1

0.200015 10 -1

0.200007 10 -1

0.529917 10 -1

0.108886

-0.239187 10 -2

0.115666 10 -1

0.460632 10 -I

0.338088 10 -I

0.178297 10 -3

condition

0.210794 102

0.204110 101

0.190301 101

0.425356 102

0.228352 101

Table. 7. Selected eigenvalues and conditions for compressible boundary iayer flow. Pa-

rameters as in caption of Figure 6.
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Fig.6. Pseudospectra for compressible boundary layer [tow" for M = 2, fl = 0.08, R =

1000 and _ = 0.021 (a) Superposition of 100 spectra perturbed by random matrices of

norm 10 -3. (b) Contour plot of constant resolvent norm. The contours represent levels

from 10 -4 (innermost contour) to 10 -2 (outer contour). The spectrum is dispIayed by

the square symbols. Note the different scaling/'or the real and imaginary axis.

2O

I

Z



4. Summary and Conclusions

A sensitivity study of hydrodynamic stability operators has been conducted to in-

vestigate the response of eigenvalues to small perturbations. Classical techniques from

matrix perturbation theory as well as the concept of e-pseudoeigenvalues has been ap-

plied to obtain qualitative and quantitative results. Applications involved incompress-

ible plane Couette flow, incompressible trailing line vortex flow and compressible Blasius

boundary layer flow. All examples showed sensitive eigenvalues that deviated from their

unperturbed location by orders of magnitude more than the norm of the perturbations

imposed on the matrix entries.
In the case of Couette flow, the most sensitive eigenvalues have been found in the

junction of the three eigenvalue branches whereas the least stable eigenvalues showed a

rather small response to small random perturbations. The sensitivity of the spectrum

measured by the norm of the resolvent evaluated .at specific points in the complex plane

increased monotonically with Reynolds number.

For the case of trailing line vortex flow, viscous and inviscid perturbations have to be

distinguished. For inviscid perturbations, again the unstable mode seems to be rather

insensitive and the regions of high sensitivity are located close to the real axis. The

case of viscous disturbances imposed on the vortex flow, however, showed a dramatic

effect of small perturbations on the location of the eigenvalues. The only unstable

mode experienced the highest sensitivity implying the loss of its predictive character

because of the dependence on very small perturbations. As in Couette flow, in both

cases of trailing line vortex flow the sensitivity increased monotonically with Reynolds

number. Investigations of the norm of the matrix exponential revealed large transient

growth which resulted in a growth rate superior to the one predicted by the unstable

eigenvalue. The field of values of the linear operator gave a necessary and sufficient
condition for transient growth as well as a measure for the maximum possible growth

rate.

Although the compressible Blasius boundary layer spectrum appeared to be less sensi-
tive to small perturbations than the previous cases, only a small perturbation is needed

to find eigenvalues stemming from the continuous entropy branch in the unstable half-

plane. It is conjectured that the sensitivity will increase for higher Reynolds and/or
Mach numbers.

One of the main interest of hydrodynamic stability theory is the understanding of

the temporal behavior of small perturbations superimposed on a steady flow field. This

behavior is governed by the initial-boundary-value problem stated in section 1 of this

presentation. The analysis can, therefore, be restricted to understanding the behavior

of the operator/2.
There are two distinct regimes to be considered: the asymptotic regime of large times

(t ---+ oo) and the transient regime. In the first regime, it has been shown that the

eigenvalues of L; are sufficient to completely describe the behavior of/:. In the second

regime, however, eigenvalues do not suffice to describe the temporal behavior since it
may not be mode-like. Hence, there is a need to replace eigenvalue analysis by a more

21



effective tool to analyze operators which can experience large growth due to their non-

normality during this transient period, e-pseudoeigenvalues, i.e. eigenvalues of the

slightly perturbed operator, can be used to extract informations about the operator in
its transient phase and to "visualize its behavior".

As the transient growth can be quite substantial, the nonlinear regime may be reached

during the transient phase, rather than by a mechanism based on exponential growth.

As has been shown [20], the growth mechanism Stemming from the n0n-normaiity of the

linear operator plays a dominant role during the early stages of transition to turbulence

in parallel shear flow. For incompressible flows it is only this linear mechanism that

can provide an increase in total perturbation energy. The implication of growth due

to non-normality is therefore of primary importance in hydrodynamic stability theory.

A necessary condition for growth is the non-normality of the stability operator and

sufficient conditions can be derived (together with bounds on the maximum growth

possible) from the e-pseudospectrum [19].

For these reasons, the study of the e-pseudospectrum is essential when encountering

highly non-normal operators or matrices.
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